Acid Resistance in Francisella tularensis

نویسندگان

  • Noreen J Adcock
  • Brian J Morris
  • Eugene W Rice
چکیده

Francisella tularensis, the etiologic agent of tularemia, can survive under acidic conditions. Tularemia can be acquired by several routes, including by ingestion of contaminated food or water. While acid resistance is usually associated with a low oral infective dose (ID), the ID for gastrointestinal illness is quite high. In this study, four strains of F. tularensis ssp. tularensis (type A) and four strains of F. tularensis ssp. holarctica (type B) were examined for innate acid resistance and the ability to survive in synthetic gastric fluid (SGF) under in vitro conditions similar to passage through the human stomach. Survival for all strains was significantly less in pH 2.5 SGF than in pH 2.5 phosphate-buffered saline and pH 4.0 SGF. Attenuated strains were consistently less resistant. Type B strains are most often associated with waterborne outbreaks and were examined after storage in natural water. Low-nutrient preadaptation resulted in increased resistance. Although F. tularensis can persist under certain acidic conditions, it is sensitive to conditions replicating the fasting human stomach. This may help explain the high ID required for gastrointestinal infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The immunologically distinct O antigens from Francisella tularensis subspecies tularensis and Francisella novicida are both virulence determinants and protective antigens.

We have determined the sequence of the gene cluster encoding the O antigen in Francisella novicida and compared it to the previously reported O-antigen cluster in Francisella tularensis subsp. tularensis. Immunization with purified lipopolysaccharide (LPS) from F. tularensis subsp. tularensis or F. novicida protected against challenge with Francisella tularensis subsp. holarctica and F. novicid...

متن کامل

Characterization of recombinant Francisella tularensis acid phosphatase A.

Francisella tularensis is the etiologic agent of the potentially fatal human disease tularemia and is capable of survival and multiplication within professional phagocytes of the host. While the mechanisms that allow intracellular survival of the bacterium are only now beginning to be elucidated at the molecular level, previous work demonstrated that F. tularensis produces copious levels of an ...

متن کامل

Construction of targeted insertion mutations in Francisella tularensis subsp. novicida.

Francisella tularensis is one of the most deadly bacterial agents, yet most of the genetic determinants of pathogenesis are still unknown. We have developed an efficient targeted mutagenesis strategy in the model organism F. tularensis subsp. novicida by utilizing universal priming of optimized antibiotic resistance cassettes and splicing by overlap extension (SOE). This process enables fast an...

متن کامل

Symbiosis with Francisella tularensis provides resistance to pathogens in the silkworm

Francisella tularensis, the causative agent of tularemia, is a highly virulent facultative intracellular pathogen found in a wide range of animals, including arthropods, and environments. This bacterium has been known for over 100 years, but the lifestyle of F. tularensis in natural reservoirs remains largely unknown. Thus, we established a novel natural host model for F. tularensis using the s...

متن کامل

Discrimination between Francisella tularensis and Francisella-like endosymbionts when screening ticks by PCR.

The presence of Francisella-like endosymbionts in tick species known to transmit tularemia poses a potential diagnostic problem for laboratories that screen tick samples by PCR for Francisella tularensis. Tick samples initially considered positive for F. tularensis based on standard 16S rRNA gene PCR were found to be positive only for Francisella-like endosymbionts using a multitarget F. tulare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014